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In this paper it is determined precisely when a given function belongs 1o some
Tchebycheff system.

I. INTRODUCTION

Let .#(7) be the set of real-valued functions on any subset 7" of the veal
line. Let L' C . #(T) be any (k + 1)-dimensional vector space over & (the
real line). U is a Tchebveheff space (T-space) of degree k fl for every nonzero
u e U the number of distinct zeros of u, Z(u), and the number of alternations
in sign of u(r) with increasing /. S-(u), each do not exceed A. Any basis of
T-space is a T-system, as classically defined in terms of the permanence of
sign and nonvanishing of the Haar determinant, and if ju,07 |, 15 @ 7-system.
then the linear space generated by these functions forms a T-spuce. The
T-space U is a Markor space if there exists a chain of T-spaces U of respective
degrees i, i - Q. 1., k { such that &, C U, C - C U, ;L.

Asetofelementst, e 7,7 - 0, I,..., m,is said be a weak alternation sequence
of length m for w if 1, , - 1, for i ... moand D wli)ywry O
i.j =0, 1. m. Define S* () to be the supremum over all 7 such that there
is a weak alternation sequence of length m for v. We show that v .#(T)
can be embedded into a T7-space or equivalently. a Markoyv space iff
S(uy - - oo, In particular if S (1) - A, we construct a chain of T-spaces L,
of respective degrees /7, / - 0, l.... such that v« U, and (7 [, 7
v,Cu,,, C--

Any function / such as § defined on .# (7)) and taking values m ihe set of
nonnegative integers and - o is called an indicator function 1f for every
(ki D-dimensional subspace U. U is a T-space T for all nonzero w o (.
() k. We show that § is an indicator function which majorizes all the
indicator functions. Also. there is no minimal indicator function. On the
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EMBEDDING INTO A TCHEBYCHEFF SPACE 127

other hand, while Z is not in general an indicator function (it is for the class
of continuous functions on an interval), Z(u) << I(u) for all indicator
functions [ subject to a nominal normalizing condition.

Let ug,..., u, be any real-valued functions defined on an arbitrary set T
of cardinality greater than k. For ¢, ,..., t, € T let t = (4, ,..., #;) and define the
(k 4 1) x (k - 1) matrix V(t) (the Haar matrix) by V,;(t} == u,t;). Classi-
cally, a Tchebycheff system (or 7-system) referred to a set {u;}*_, of contin-
uous functions defined on some closed real interval [a, 5] such that

det V(s) V() > 0, (T)

whenever s, <C 5, << - <5, << t; << -+ < 1,,. In this case of continuous
functions on an interval, the condition (T) is equivalent to the Haar condition:

det V(t) = 0, whenever ¢, ,..., t,, are distinct.

This in turn is equivalent to the condition that the u,’s be linearly independent
and that every nontrivial linear combination of them have at most k zeros
(in [a, b]).

When each subset {u;}l',, n =0, 1,..., k is a T-system, {u,}_, has been
called a Markov system, and when a T-system {u,}5_, can be extended to
a larger T-system {u;}}7) , the former T-system has been called extendable.
If for every choice of points s, <<+ < §, by < =+ < f;,, det V(s) V(t) = 0,
{u;}¥_, has been called a weak T-system.

Unfortunately, there has been no general agreement in the literature about
which term to apply to which concept and the reader is cautioned accordingly.
The terminology used in this paper has been chosen to reflect both historical
precedent as closely as possible and also the functional requirement that the
important classifications be named suggestively and succinctly.

Extensive studies of such 7-systems and Markov systems can be found
[1; 3;4; 6] and others. T-systems of continuous functions on open or half-
open intervals (see [3]) or on compact sets (see [1; 3, Chap. VII; 5}) have also
been dealt with. Work with 7-systems of arbitrary real-valued functions
defined on an arbitrary partially ordered set appears to have surfaced first in
Rutman [7], and is further developed in Zielke [8;9]. Combining results
from the last two papers gives

THEOREM (Zielke). Any T-space on a dense subset of an open interval is an
extendable Markov space.

In his earlier paper [8], Zielke provides the example 1, fsin ¢, tcos ¢ on
[0, 7] of a T-space of infinitely differentiable functions on a closed interval
which is not a Markov space. In fact, for every dimension and for half-open
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as well as closed intervals, there are examples of non-Markoy T-spaces in
Zielke {10].

Fundamental to both of Zielke's papers is his investigation of alternation
properties which characterize 7-spaces. Whiie there is in the literature some
prior mention of such properties (e.g. [2: 3, Chap. VI S, Sect. 3, paragraph 2]
they typically have been overlooked in the study of T-spaces. most probably
because for T-spaces of continuous functions on an interval they dre trivial,
However, for T-spaces of arbitrary functions on arbitrary domains thev are
essential.

For, while a st of continuous functions on annterval s o F-systemn 1and
only if the functions satisty the Haar condition. sad while in fact a 4 -
dimensional linear space of such functions on an open interval v an
extendable Markov space if and only if each nonzero function has no more
than & zeros, for arbitrary functions on an arbitrary domain these conditions
are far apart. Specifically, if "u,!!_, satishies the Haar condition. we define its
finear span U to be a Haar space. This is equivalent to the condition that
Z() =2 k for each nonzero v ¢ & and the dimension of & is & ioitin
addition the domain of the elements of U is linearly ordered and § (11 IS
for each we U7 then at {oliows that w7, 18 a T-system as defined by
condition (T), and conversely, 1 which case U7 s a T-space. iEguivalently.
if the dimension of ¢"is £ - { then U isa T-space W and only i S iy &
for each nonzero v e U.)

Clearly, extendable Markov space Markov space T-spuce Haar
space, and as we have said. when the space consists of continuous functions
on an open interval, all these implications are reversible. When the functions
are arbitrary, even on an open interval, the last implication 1s not in general
reversible, but by Zielke's theorem the first two nonetheless are. The
previously mentioned example shows that the second implication is not
reversible in general.

Wa. be R, a - b then {a b}, ta, bl and [a, 6{ (07 a, b)), are, respectively.

the closed, open, and half-opened intervals between o and b, For any set 7.
card 7 denotes the cardinality of 7. If 7T #. the closure of 7 (in &)
is denoted ¢l 7. The letier 7 15 reserved to denote the Haar matrix
(with respect to inferred u, ..., u,). The next femma follows from linear
algebra.

(L1 LemMmA. For any scr 70 the set gy g - 7 () iy linearly independent

if and only if there are distinet 1, € TG+ 1 . k) such that det V(t) -+ 0.
It follows that if u, ..., u, are linearly independent, then card T 7 & i

(1.2) Cororiary. Ifu.l  is a lincarly independent subser of # (T3 then

Jor somie (.ot e T qind ary iy e dy 0 T S i i the licar space
R A ANTIT N G i

spanncd by L)
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2. DeriNITIONS, BASICS

Let T be an arbitrary set and suppose {#;}5_, C Z(T). Then {u,}_, is called
a Haar system of degree k if the Haar condition (see above) is satisfied.
If T'is a linearly ordered set then {1,}}_, is called a T-system of degree k if the
condition (T) is satisfied. When furthermore {i,;}]., is 2 7T-system of degree n
for n = 0, 1,..., k then {u;};_, is called a Markov system of degree k.

The linear span of a Haar (respectively, 7-, Markov) system of degree &
is called a Haar space (respectively, T-space, Markov space) of degree k.
Notice that a Haar, 7- or Markov space of degree & has dimension k& + 1
and that any basis of a Haar (respectively, 7-) space is a Haar (7-) system
of the same degree. Furthermore, the restriction of any such space of degree &
to a subset of cardinality at least & + 1 remains such a space of degree k.
And in view of the defining Haar condition and condition (T), if {«;}}_, is a
Haar system on a set 7 (respectively, 7- or Markov system on a linearly
ordered set T) and 0: T— T is a 1-1 map to a set T~ (respectively, a strictly
increasing or strictly decreasing map to a linearly ordered set 7”), then
{u;»8-1F , is a Haar system (respectively, 7- or Markov system) on
o(T).

The term “‘polynomial,” sometimes appearing in the literature to denote
an element of an arbitrary space, is here reserved exclusively to denote an
algebraic polynomial (an element of the T-space with basis 1, 1, £%,..., t%).

The following easily proved lemma is needed in what follows.

(2.1) LemMA.  Any element u of a Haar space U of degree k having k
(distinct) zeroes t ,..., 1, is a scalar multiple of a determinant function:
u(t) = adet V(t, 1, ,..., t) for some « == 0. If Uisa T-space and t, << -+ < t,,
then after possibly multiplying u by —1, telt;, t, ([ = (=D $(t) < 0 for
i=0,.,k (withty = — o0, t,; = + ).

3. EQuUIVALENT CHARACTERIZATIONS OF T-SPACES

Let U be a (k + 1)-dimensional subspace of #(T). In the preceding section
we defined U to be a T-space in terms of a basis for U. However one can
characterize a T-space by properties of the elements of U without explicit
mention of a basis. If U is a (k -+ 1)-dimensional subspace of continuous
functions on a closed interval [a, b], it can be shown (see [3, p. 22]) that if
every nontrivial element of U vanishes at no more than k points in [a, 6]
then U is a T-space on [a, b]. However, for functions that are not continuous
the number of points at which the functions are zero is not sufficient to
characterize T-spaces. As a trivial example let 7 = R and wuy(t) = —1 if
t L0, uyt)y =1ift > 0.
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DEerRINITION.  Suppose 7 is a partially ordered set and we #(7). An
alternation sequence of length n for v on Tis a set [x, ..., x,1 T T satistying
X <7 o <7 x, and such that (-~ 1) 7 u(x;)) u(xy)) - 00 = i, j - n). (This, of
course, is equivalent to w{x;) u(x, 1} < 0 when n - 0.) The supremum of #
taken over all alternation sequences of length » for « on Tis denoted S (u).

Now suppose T;. 7, ... are pairwise disjoint subsets of 7 such that u
never vanishes on 7, (i =~ 1. 2,..)), and such that foreach i, a. b= T, 1c T,
a-<t< b ~teT (e.g, if TCRtheneach 7T, '~ Iforsomeinterval 7).
With i i denoting the restriction of i to 7' . the supremum of 3, S (v ;)
taken over all such sets {7, . 7. ....} is denoted S™(u).

The notation S~ and S* is consistent with that in [2-4]: while in these
sources the definitions of S° and S are in terms of the number of sign
changes in related sequences. our definitions here are equivalent to the others.

For any set 7, the number of distinct elements = T such that «(r)y -0
(the zeros of uin T) is denoted Z(u).

A double zevo t of ue #F(T) is a zero of u such that for some r. v e 7
r <t <2 sand for any x, v e Tsatisfyingr - v - r <2y ~Zs,mx)uly) O
The number of double zeros of u is denoted D(ur). Of course, in the case of
ordinary polynomials. our “*‘double zero™ appiies to any zero of even order
(see Fig. 1).

"
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For our purposes, the domain of a function is unique and implicit in the
definition of the function. Thus, the restrictions of a function to two different
subsets of its domain are to be considered for notational purposes as two
different functions. The restriction of a function u to a set S is denoted v .

(3.1) LEMMA. For any ue . #(T), u 0 and T lineariv ordered, S%u)
S—(u) <X max{S—(u), Z(u)} -2 S™w) - Z(u) -~ Sy — Zu) - Dun) - S an.

Proof. Suppose T, . T, .... are pairwise disjoint subsects of 7 on which «
never vanishes as above, ordered so that sup 7 inf T, . The concate-
nation of an alternation sequence of length n in 7, with one of length m
in 7. will, after possibly excluding the first point in the second sequence,
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form an alternation sequence of length at least » + m on 7, U T,.; . Hence,
S%uw) << S(u).

Conversely, an alternation sequence of length z on T can be partitioned
into subsets P;, i = 1,..., m of maximal cardinality subject to the constraints
that each P; contains only elements which are consecutive in the original
alternation sequence, and that in the convex hull of P, (for each i = 1...., m)
u does not vanish. Then by definition S%u) = 3, S(u) = n—m+ 1
where u, = u|p . In as much as between any two P;’s (ordered on T) there
necessarily lies a zero of u (by the maximality condition), S=(u) << S%(u) + Z(u).
Hence the second and third inequalities also hold.

The fourth inequality is trivial.

For the last inequality, we can assume without loss of generality that
Z(u) < 4+ oo. Suppose Ty, T, ,... are as above, Let an alternation sequence
of finite length be chosen in each 7, and let x,, x ,... be the natural linear
ordering of the set formed by all the respective alternation sequences (one for
each T;) and all the zeros of u. By discarding (if necessary) from x,, xq ,...
the first element from any of the alternation sequences chosen in 75, Ty ,...,
respectively, the remaining points relabeled y, < y; <y, < -+ can be
formed into a generalized alternation sequence for u. Since there are n 4 1
points in an alternation sequence of length n, it follows that S%(u) + Z(u) <
S~(u). Furthermore, if y, is a double zero, there exist r, s € 7" such that for
all x, yeT, r <x <y, <y<s implies u(x)u(y) > 0. In this case,
either the generalized alternation sequence y,, ¥, .... can be augmented by
the inclusion of one or both of ror s, orelse y,, : == min{ y, ! v > i, u(y,) # 0}
was the first element in the alternation sequence chosen from some T
{thus undiscarded). In either case an extra point exists in the generalized
alternation sequence on behalf of y, . The nonzero elements of the possibly
augmented sequence can be decomposed into new 7T;’s as above, and the
previous argument repeated for each double zero. Hence S%w) + Z(u) -~
D(uy << SH(u).

(3.2) Notes. 1. If T is a real interval and v i1s continuous, S%u) = 0
whence S~(u) < Z(u).
2. If uis a polynomial, S*(«) < degu.

3. If T is an open interval and u is a polynomial, S~(u) is exactly the
number of zeros of v in T of odd index, and S*(v) = Z(u) + D(u).

4. All the inequalities in Lemma 3.1 can be simultaneously strict
(see Fig. 1).

It was noted earlier that continuous functions defined on an interval T
form a T-space of degree k if and only if the only element with more than &
zeros is 0. This equivalence is true in general for a Haar space:

640/21(2-2
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(3.3) LEMMA.  Suppose U is a (k - V)-dimensional linear subspace of #(T)
(T arbitrary). Then U is a Haar space if and only if Z(u) -3 k for every
nonzero ue U.

While a Haar space is not in general a T-space, the following equivalences
do obtain.

(3.4) THEOREM. Let T be an arbitrary linearly ordered set and let U be a
(k -+ D-dimensional linear subspace of Z(T). Then the follwoing are equivalent:
1Y Uisa T-space of degree k:
2y SHu) - kand Zu) k whencerer O we U
3) S%w) - Z(u)y ook whenever 0 = ue U
4y Si(u) - k whenever O == ue U.

Proof. (1) - (2). Asin [8], Lemma 2(a) - (b).
(2) -~ (4). Asin [8]) Lemma 2(b) (c).
(4) =~ (3). This is a direct consequence of Lemma 3.1.
(3) =~ (I). Let {u;\%., be any basis for /. By Lemma I.1 there are
elements of 7, say f, - - - t, such that with respect to w7 .
det V{1, ..... t;) == 0, say det F(i, ..... ty 0.

{
(
{
{

Now suppose s, <. = - s, are any other elements of 7. It suffices to
show that det V(s ..... 5.y - 0. Define r; == minis,, t;) (i = 0,..., k). Then
= mings;, 1) e s <0 s and similarly vy <o ro g so < (= 000k - ).
For i-=0,.,4& define ¢(r) = det V(rp ooy iy s £y tiiq aeees et If
@it -0 then ¢, -~ 0 whence by (3) ¢, has exactly k& zeros (namely.
Fiseees Fioy s Figg ooy 1), It follows from (3) that in this case S%¢,) - 0.
whence @f?;) 0 implies ¢{r) - 0 whenever t<lr, 6, [OT
O, kir, infT,1,., supT).

Now qqlty) -0 and rysr L (] S0 golred - 00 But golry) — gulry) 50

r;

i

gitt;) - 0. Continuing in this fashion, we eventually obtain det V(r, ... )
@ilry) = 0, that is, the sign of det V(1,..... 1) is the same as the sign of
Pulri).

Replacing ¢; by s; in the definition of ¢, , we analogously obtain that the
sign of det V(s ...., s,) is the same as the sign of ¢.(r,), which has to be
proved. (Note: This proof is similar to [8]), Lemma 2(c) = (a) where the
author makes an unnecessary additional assumption.)

4, INDICATOR FUNCTIONS AND EMBEDDING

In Section 3 it was demonstrated how Tchebycheft spaces can be character-
ized as finite-dimensional linear subspaces of .#(T), whose elements are
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constrained to have a specified maximum number of alternations or zeros.
Theorem 3.4 showed that a (k -+ I)-dimensional subspace of #(T) is a
T-space if and only if for every u == 0, S*(u) < k, max{S—(v), Z(v)} < k,
or SNu) + Z(u) < k. These functions S*, max{S—, Z}, S* + Z as well as
S° + Z + D all therefore serve to indicate whether or not a finite-dimensional
linear subspace in #(T) is a T-space. In fact, there are an infinite number of
such functions. We call this family of functions indicator functions for 7.

DermNiTION. A function I: F(T) — Z+ U {+ w0} where Z* is the set of
nonnegative integers, is called an indicator function (for T) provided that for
any (k -+ 1)-dimensional subspace U of #(T), U is a T-space of degree k iff
I(u) < k for every nonzero u e U.

Take any T-system {u;}¥  (k > 0) on a linearly ordered set T, card T >
k - 1, and any t, € T. By changing the signs of uy(ty),..., u;(#,) or, respectively,
setting u,(ty) = - = uy(ty) = 0, the respective linear spaces generated by
the new u,’s are not T-spaces. However, the respective linear spaces are of
dimension k + 1, and for every u = 0 in the former, Z(x) < k while for
every u 5= 0 in the latter, S~(v) < k, by application of Theorem 3.4. Thus,
neither Z nor S— are indicator functions. However, $—(«) and Z(u) are both
less than k for any nonzero element u belonging to any T-space of degree k.

We can introduce a partial ordering in the set of indicator functions for
a set T as follows. If I, , I, are any two, then /; < I, iff for every nonzero u,
() << Tu).

We prove in this section that S* is the (unique) maximal element in the
family of indicator functions for any subset of R.

We now proceed to prove this. Actually, we prove a stronger resuit,
namely that if $+(u) is finite then there is a Markov space of degree & con-
taining u. This is constructed explicitly.

Before we proceed to the general proof we show how the proof works
when u is a polynomial and 7 is some closed interval [a, b]. Let S™(u) = k,
and let all the zeros of u be simple in [a, b]. Then u has k distinct zeros in
[a, b), say s; < - < s, . We show that irrespective of the degree of w (as a
polynomial), u can first be embedded into a T-space of degree k.

Let P(t) = [1._, (s; — ). We assume for simplicity that s, > a and
P(a) - u(a) > 0. Observe then that the polynomial u(z)/P(¢) > 0 for all
t € [a, b]. Define the polynomials u{t) = u(t)/(s; — ) (1 < i < k). We show
that u(t) together with u,(2) (1 < i < k) form a T-ssytem of degree k in
Z([a, b]) (and hence the space which they span is a 7T-space of degree &,
containing of course u(t)).

Let ¢g ,..., c;; be scalars, not all zero. It suffices to show that for v(¢) =
cou(t) + Tivg ciuit), Z(W) < k (recall that Z is an indicator function for
continuous functions on closed intervals), since then also u, u ,..., u,, must be
linearly independent. Define the polynomials P{r) = P(t)/(s; — t). Then
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Uy s e - 2 cls ) - )i PO Py - 2 e P is i polvnomial
all of whose zeros in [a. b] are zeros of the polynomm! ey Y e Pooof
degree < k. Hence Z(r) k.

In the general case, it must be shown that S (7 - A, from which the
desired result follows by Theorem 3.4. Difficulties arise because in "c*m:ru’

u(t)/(s, ~ 1) is not well defined at 7 . This i handled by “splitting”
the set 7" at each s,
Given that S*( .) - « implies that « can be cmbedded o o T-vpace,

it 1s shown from Lemma 4.1 that uv can be embedded nito a4 Markoy spuce.

4.1y Lesima. Suppose TCOR. card 77 4 and xp o xs o s B osatisfy
Xy o Ne oot inf 7. Then any  T-space  of <!U~ie Aoon
Xy, Ny X U T s a Markor space of degree boon T,

Proof. Let Ubea T-space of degree k on {x, v, o, v b Tolet O L.
and for O 7 - k define U. recursively by U, tuw= U, | wmy, ) 0L
Clearty. ¢, C U, C--CU, U and the restriction U, 4 is an 1y-

dimensional subspace of U . Furthermore, U; ; is a T-space of degree ¢
on T by the implication (3) (1) of Theorem 3.4,

Now suppose TC R, we #(T) and S (1) - . ket ¥ be amy \UM}
monotone bounded map. 6: &~ R.set T #(Tyandsets  w o 1o (T
Then S (1) - -~ S () and T is bounded. Augment 7 by & 5(2) points as
in Lemma 4.1 and extend ¢ to ¢ on the augmented set so that S {0y S (7).
[t follows that if v is contained in a T-space of degree S () on the augmented
set. then ¢ is contained in a Markov space of degree S (&) on T by Lemma 4.1,
Hence. u is contained in a Markov space of degree S*(zyon 7 0 47T

(4.2) Lemva. Suppose T is linearly ordered. we #(T). 5 (wy b and
te T. Then there exists ¢ weak alternation sequence of length k for u. which
incliudes 1

Proof. Let 1, - =+ - . be any weak alternation sequence for v of
length 4. and suppose (for example) that ¢, ~ ¢ < ¢, . If wlt) 0 then
Ly = = f, <0t t, o0 < 118 a sequence of the desired wvpe. (f

w(t) 0. iind m (O - m - k) such that «{z,) - 0 (possible since Zlu)
So(uy -+ ky. Then either ( - D 7 () ulr,) ~Oor (- Wyt muiyue,y O
Trading 7, for f in the first case. and 7, ., for 1 in the second. produces a
sequence of the desired type.

(4.3) Lemva. Suppose P. v e F(TY are such that Pityeiry O and if
v(z) — 0 then P(z) - 0. Then Sty ~ S (P).

Proof. Supposc ¢, - - ;18 a weak alternation sequence for < Then
LDy ey ctDIC - D7 Py PO fe€r) Pud (e PUNY - O Since
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(— D o(t,) v(t;) = 0 and is equal to O only if (—1)i~/ P(t;) P(t;) = 0, it
follows that (— 1)~ P(r,) P(t;) > 0 whence ¢, < -+ < t,, is a weak alter-
nation sequence for P. Thus S*(v) < S*(P).

~ (4.4) THEOREM. For an arbitrary TCR let ue F(T) and suppose S+(u)
is finite. Then there exists a Markov space of degree S*(u) containing u.

Proof. Tn view of Lemma 4.1 and the remark following, it suffices to
show that there is a T-space of degree S*(«) containing u. If $*(x) = 0 then
the one-dimensional space spanned by u is a T-space of degree 0. It is a
similar triviality if ¥ = 0. Hence, assume » ¢ 0 and St(u) = k > 0. Tt
follows that card 7 = k + 1. For any xR define v, = u ]],x,x]m (the
restriction of u to ]— oo, x] N 7). Note that when }— oo, x] N T = &,

SHuy) < S*H(u,) < x < y, (4.4.1)

and if the first inequality is strict, so must be the second.
Next it is shown that for 1 < i <{ k, there exists an x € T such that

SHu,) = i. (4.4.2)

For i = k, since S*(u) = k there is a weak alternation sequence for v of
length k, say t, << -+ < 1, ; then x = ¢, satisfies S*(u,) = k. Now suppose
that y has been found such that $+(u,) = i > 1. We find an x <C y such that
S*(u,) = i — 1 and the desired result then follows by reverse induction on i.
Indeed, let 7, << --- <1, <y be a weak alternation sequence for u, . Then
fy << t; << - <t is a weak alternation sequence for U, ,80i—1=<
St(u, ) < Stw,) =1 If S*(utF1 =1i—1 we are done, so assume
St ) =i and let s, < -+ << §; be a weak alternation sequence for U,
Slmllarly, i— 1< S"u,_) <i and we are done unless S+(us£_1) =i
in which case we once more find a weak alternation sequence o < e <y
foru,, . Butr, <<s,q <$ <ty <t; <yandu(t; ) u(t;) <0, so either
P < vt <rp <ty OF o < << r; < t; 15 a weak alternatlon sequence
for u, of length i + 1 > §*(u,), a contradiction. Hence, etther S*(u,, )=
i — 1 orelse S*(u,,_ ) = i — 1, which completes the proof that for I < i < k,
there exists x € 7 such that 4. 4 2) holds.
Define
= infixe R | S*(u,) =i}

forl <i <k By(442),i— 1< S"(u,) <i(l <i< k). Itfollows that
S"L(usz_) <i<i+ 1L S‘»‘(usm), )

§; < Sigs - (4.4.3)
Next we show that if x, ye T, x << y and u(x) +# 0 then
S (ux) + S+(u l[nc y]mT) S+(uy) (444)
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Lete = u'![, ,1~7 . By Lemma 4.2 find a weak alternation sequence of length
S*(u,) for u, including x and one of length S*(x) for ¢, also including x.
Since uw(x) = 0. the concatenation of the two Requences forms a weak
alternation sequence for u, . whence S'(u,) -~ S (3 - S'(u,). On the other
hand, there 1s a weak alternation sequence of]enscth S tu ) for i, , containing
x, also by Lemma 4.2. Thiﬂ induces weak alternation sequences tor u, and r.
$0 S u,) - S (r) {u,), completing the proof of (4.4.4).
it follows from thc precedmg that for any v. v 7.

Dy v S ) Yy 443

Indeed, if w(x)u( ) — O then (4.4.5) is trivial, so assume w(x)wg vy O,
Assume x < 3. let # = S (u,) and find by Lemma 4.2 & weak alternation
sequence of length »2 for v, , including x, say ¢, 1, x 1.,
Then s« St 0 m o S, ~e) and thus by (dddy 0

(uy - om) IS W er) o o aD) s S,y 0 0, so ot part-
cular m - S¥(u,). Furthermore. (- -1y " u(x)ulr,) -0 so if ¢ 1y~ !

u(x)yu(yy = Othens, - - 1, = visa weak alternation sequence for
u, of length n - 1, an impossibility. Hence 1y " wixyaul vy - O com-
pleting the proof of (4.4.5).

Define s, - - x. 5., - o, Notice that it s o v 5, , then
S+(u,) == i by the definition of s, , whereas S {(u,) ; 1 by the definition
of s, .,. chce

) i+.4.5

o

80X S0 S(u,) i 4 /

Furthermore, we obtain for | ik

L O A T AR 70 S B 4 447y
since it w(ry = 0 then S:{u.) S (u;,) whenever W FEE VIR R FIN NG
Js; . tf T by (4.4.6). whence / S (w.)  Sttwr oo contra-
diction.

Now since card 77 - A, there 5 a 7. ¢ ¥ different from s ooy say
Syt o, O p e k) By (A4 wr)y 0 00 and we may. without
foss of generality assume that ( D77y 00 With this normalization,
since S} - p by (4.4.60 for any r= T¢I U ury 0 by (445
Hence. by (4.4.6) and (4.4.7). we obtain

teds, s, v 0 Walty 0 w7 ky L 4.8}

The two resuits (4.4.3) and (1.4.8) were the goal of this first part of the
nroof of Theorem 4.4

Next, aosomewhat involved process Isvoundoriahon whose purhess
“split™ Tat cach “alternation” point v and o insert into the Tapln”
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“alternation” point r, . This new point is isolated with respect to T, ensuring
that @, (¢) = 1/(r; — t) be well- defined (and bounded) in 7. However, it is
needed that the r;’s be alternation points of the new split set 8T. To ensure
this, when 5, € T, 5; must fall on the appropriate side of r;, according to the
sign of u(s;): that is, on the left (s,_, , 5;[) side when (—1)*1 u(s;) > 0 and
on the right (Js;, s;,.4[) side when (—1)? u(s;) > 0. Define 6: R — R by
0(t)y =t +4dmax{ils, <t} when = 5,..,5; for | <i <k, define
0(s;) = s; - 4i — 2 except when s; = s,,,, in which case define (s,) =
§; -+ 4i -+ 2 (=0(s;,1)). Clearly 8 is strictly monotone on R, as is 81 on the
image of 0.
For 1 < i < k, define

rio= 0(s;) — 1 if ;€ Tand (—1)"u(s;) > 0
= 0(s;) — 1 if s,eTand (—1)Yu(s;) >0, 0rs; = 5;,.,;

= 0(s;) if s;¢Tors;eT,u(s)=0ands; < s,.,.

In order to show that r; is well defined, it is sufficient to show that if s, = s,
then s, € T and (—1)! u(s;) > 0. Indeed, for x < s;, S(u,) < i while for
X > §; = S;4 , St(u,) > I (by the definition of s; and 5,,4). Thus x == s, is
the only element which can satisfy (4.4.2), whence s; € T and S*(u,) = i.
Furthermore, by the definition of s, , since 5; == s,,; , 5, must be an accumu-
lation point of T from the right. Thus thereis a r€]s;,, s, N T, and by
(4.4.6) S*(u,) =i+ 1. But (—1)¥lu() >0 by (4.4.8) and [(—1)! u(s,)]
X (=D u()] = (— D)%V us) u(t) = 0 by (4.4.5), so (— 1D u(s;) = 0.

By construction, r; < *-+ < r,., no r; is an accumulation point of 47 and
r; €8T only if u(s;) =0 and s; < 5,4, in which case r; = 0(s;). Since
(—1fu(t) > 0 for tels;, s; 1[N T, it follows from the above construction
that whenever ¢ € [r; , rial N 0T, (— D u(874(2)) = 0 (0 << i << k); equality
occurs, of course, only when t = r,.

A T-system defined on the set 87 and including the function uo 8- is
constructed. This T-system then pulls back to a T-system on T which
includes u. Let @4(r) = 1 and let @f) == 1/(r, — t) for | << i <C k. For all
tefTand 0 << i < kdefinew, € Z(0T) by u,(t) = w(0-1(¢r)) ¢(t)unlessi > 0
and ¢t = r; in which case let u(r;) = (—1)-..

Notice that u, = u o 6-1. Tt will be demonstrated that {x,};_, is a 7T-system
on A7. Assuming this is done, define 4, == u; 0 (0 << i << k). Then 4, — u
and {i,}%_, is a T-system of degree k on 7, which is equivalent to what was
to be shown.

Hence, it suffices by Theorem 3.4 to show that the linear space generated
by {u,}7_, is of dimension & -+ 1 and that for any nonzero v therein, S*(v) =< k.
For this it is sufficient to show that for any scalars ¢ ...., ¢, , not all zero, if
v = 3 cu; then ST(v) < k (since card T > k and Z(v) << ST(v)).

Define P(t) = [Tr.q (r; — t). Then for all te 8T, if u(#-'(¢)) + 0, then
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t=r, (1:.i-= k) so P 1) 0 and w640, Py 0 (since for -
Vriu i al M AT, both (- 1) u(b -0 and (1) Ptr) oo 0). Let Qi)
P(t)yqgdt) G = 1 - A) and set Q(r} vz » ¢;0At). Then each Q, and hence ¢
are all polynomials of degree less than or equal to A. Thus. by (3.2.2)
SHQ) + degQ - A

I 0%y = 0 then oty X iy L@ ey, P o Pty ¢ a0
{812 ))i P(2)] O(2). Since the term in brackets is strictly positive, ofr) Q(r)
(@21 )/ P()] Ot)* =+ 0, and v(7) = 0 implies Q(r) = 0. On the other hand
ifu(6(t)) = Othenr = r, = Bs)) forsomej= 1. k such thats, - s, .
In this case wir;) - ws)ygAry = O when ¢+ j and v(r) X o)
(-~ Byt At the same time Qur,) - 0 f 7 - joso Q@) = X ¢Q0r)
¢;04r;). Observe that Q(t) -1 trs -yoso ¢ DOy 0. Hence
o(r) Q) - A DY) - Dand if e(r,) - Othene, = Oso Q(ry) O
Thus by Lemma 4.3, § (1 ) S (Q) = k.

(4.5) COROLLARY. For an arbitrary T CR fet we . #(F) wnd supposc

S = k <= -+-oo. If card T = n then there exist T-spaces U; 77('1‘) of
respective degrees i, { = O, L...on — 1 such thar v U, and Uy, C U, C - (C
U, C--CU,.,. If card T is infinite then there cxist T-spaces U, C '(T}
of respective degrees i, for all i. such that we U, and Uy C U C - 2 U0
U, C

Proof. Shrink T to be a bounded set 7' as in the discussion following
Lemma 4.1. In the first case, find a finite set of points v, | . r, L. oo R
satisfying sup 7' <2 ry = 10 -0 - < 1, and in the second case find a
countably inﬁnite set of points r.y, ry ... o & satisfying sup T <7 r, .
< e <0 o Let Uy, C U, C - T U be the T—spacu U, of respective degree

guaranteed by Theorem 4.4 withu e U, Fori  kdefinendsy - u(tlitr, 1)
on Tand let U, be the (i + 1)-dimensional subspace of .#( 1) generated by U,
and ;. ,...ot; . Then U, C U, C U, . C - and it can be shown, as in the
proof of Theorem 4.4, that each U, is a 7-space of degree i. for i - k.

(4.6) COROGLLARY. Any indicater function I for a subser T CR satisjics
Iy = S*(w) for all nonzero uc 7(T).

Proof. By Theorem 4.4, given 0 = u < # (1) there 1s a T-space of degree
St(u) containing v. Thus by definition, {() = S (u}.

Notes. (1) 1 w is bounded then by construction the clements of U
are also bounded. It is unknown whether if « 1s continucus (respectively.
n-differentiable) then therc exists a 7-space of degree S*(u) of continuous
(respectively, n-differentiable) functions, containing u.

(2) 1t follows that when 772 &, 0 a7 s o member of some
Markov (respectively, 7-) space if and only i’ S () - e
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Thus, another characterization of S*(u) derives, namely, St(u) is the
smallest degree of all T-spaces containing u.

(3) The obvious question, namely if U is an #-dimensional subspace of
& (T) such that St(u) < + o for each nonzero u € U, does there exist a
T-space containing U, provides an open problem which would be very
worthwhile settling having, as it would, many applications in approximation
theory. It appears difficult, however, even for the case n = 2.

The next theorem and corollary are used to show that no indicator
function strictly dominates another in the sense that L(v) < I(u) for all u
such that I,(1) < + oo.

(4.7) THEOREM. Let U be a (k + 1)-dimensional subspace of F(T), T
linearly ordered. Given any indicator function I for T, there is a nonzero u € U
such that I(uy = k.

Proof. Suppose for every 0 5= u € U, I{(u) < k. Then every k-dimensional
subspace of U is a T-space of degree k — | by definition of the indicator
function. However, since U is (k -~ 1)-dimensional there exists by (1.1) some
nonzero v € U, such that » has at least k zeros. Consider some k dimensional
subspace of U containing . However, no linear space containing v is a T-space
of degree k — 1 by Theorem 3.4 since v has k zeros. Therefore, there exists
some nonzero element u in the subspace containing v such that I(u) > k.

(4.8) CorOLLARY. If U is a T-space of degree k then there is a nonzero
ue U such that Ku) = k.

(4.9) CoroLLARY. Let I, I, be any two indicator functions for the same
set. Given any T-space U of degree k on this set there exist u, , u, € U such
that

I(y) < Ifuy),
L(uz) = Iyus).

Proof. By Corollary 4.8 there exists u; € U such that I,(v;) = k whence
L)) < L) = k; similarly, the required u, exists.

The Theorem 4.10 shows that no indicator function is subordinate to
every indicator function.

(4.10) TueorREM. Given an indicator function I for a set T of cardinality
at least 2, there exists an indicator function J for T and a nonzero u € F(T)
such that J(u) << I(u).

s
Proof. Given T, let UC.#(T) be a T-space of degree at least 1. By
Theorem 4.7, u € U can be found such that I(u) > 1. Let J be defined on all
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real-valued functions by J(r) = Sw(v) if ¢ = wu. J(u) -~ 0. [t Is casy to verify
that / is an indicator function since any linear space containing u also
contains ~u for all real x, and for x -~ 0, 1, J(au) S S ().

While there is no minimal indicator function, suppose / is an indicator
function which satisfies 7(x) -+ I{u) for all real numbers x = 0, and which
also satisties I(v) = 1(u) whenever ¢ is the restriction of n to a smaller domain;
then Z(u) =7 I(u) for all . This is the content of the Theorem 4.11.

(4.11) TueoreM.  Ler 1 be any indicaror function for o sci . Then jor
0 = we F(T) there is a nonzero x e R and a subset S C T such that Z(u)
I(au ).

Proof. Let SC 7T be the set of zeros of u together with some pomnt 1,
such that u(r,) =~ 0. We show that for some veal v f(xn o) .- Z(u). Suppose
max, -, {(aw ') ~ m - Ztwy. Let U0 #(5) be o T-space of degree ny.
Let I be the mi-dimensional subspace of ¢ such that forevery ¢ = Vg, O,
Consider the linear space W spanned by the elements of ¥ and o . Since
u(ty) == 0dim W= m = 1. Any element w « 1715 of the form

T T

where r ¢ Vand a is a scalar, Clearly ftau oy mifora 0. We show thut
if # = 0 then S (w): m and hence Hw)  m by Corollary 4.6, Indeed,
(1) - w(ry when ¢ - f,. and &{r,) Q. so unv generalized alternation
sequence for w is also one lor ». Henee 8 (w) mif v 0. Hence fiw) 41
for » - 0 belong to W which implies that 1 ix a T-space of degree m.
However, i has more than 2 zeros and i contained in W, so W cannot be o
T-space by Theorem 3.4, a contradiction, Therelore, fiauw ) & for some .

In Theorem 4.10 it was shown that thers can be no minimal indicutor
function. In Theorem 4.i1 it was shown thar /. while not on indicator
function, does bound from below those indicator functions which satisfy a
nominal normahzing condition. It is now shown ihat even umong such
“well-behaved™ indicator functions, there can be no minimal element.

Indeed, we exhibit two “well-behaved™ indicator functions N and 3 tor
which min{N(-), M(9)} is not an indicator function. it follows that there can
be no indicator function subordinate to both &V and M.

For any linearly ordered set 7" and any w = U #(T), let

Miw) max! ), 2.

Ny () it 5%y - 0,
)y - i SY%w 0.

Then M is an indicator function by Theoremn 3.4, Ve next show that A1 an
indicator function.
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(4.12) LEmmA. N is an indicator function.

Proof. For any T-space U of degree k¥ and any 0 = ue U, N(u) <
SH(u) < k by Theorem 3.4. On the other hand, if U is a (k - 1)-dimensional
subspace of #(T) such that N(u) < k for all nonzero u e U, then Z(u) <
N(u) < k whenever 0 - u € U, so by Lemma 3.3, with respect to any basis
for U, det V(1y,..., ;) ¥ O whenever £, < -~ < 1, are elements of 7. In
order to show U is a T-space, by Theorem 3.4 it remains to show that the
above determinant has permanence of sign. The proof of this is exactly the
proof that (3) == (1) in Theorem 3.4.

It remains to show that

v(u) = min{ M(u), N(u)}

is not an indicator function. To this end, we first exhibit a general method
for constructing Haar spaces which are not 7-spaces.

Indeed, let UC #(T) be any T-space of degree k, where card 7 > 2,
and let 1, € T satisfy inf T << ¢, < sup 7. For each u € U define u, € #(T)
by

u(t) = u(t) if ¢ <t,,

= —u(t) if ot o>t

Set Uy = {u, e #(T) uec U}. With these definitions, we obtain the
following.

(4.13) LEmmA.  Given any T-space U C F(T) where card T = 2, then for
any choice of t, , U, is a Haar space but is not a T-space.

Proof. Suppose the dimension of U is k - I. Then the dimension of U,
is also & + 1. Furthermore, for each nonzero u,. € U, , Z(u,) = Z(u) < k
by Theorem 3.4. Thus U is a Haar space.

Let ¢ € U have k distinct zeros, one of which is 7, (cf. (2.2)). By Lemma 3.1
D(¢) =- 0, so in particular 7, is not a double zero of . Thus, ¢, is a double
zero of ¢, and D(¢,) = 1. Hence, again by Lemma 3.1, S¥(¢,) > kso U.
is not a T-space by Theorem 3.4.

Now, let T satisfy 2 < card T, and let U C .#(7T) be any T-space such that
the degree k of U satisfies 1 -+- 2k > card 7. Then, for any nonzerou . e U, ,
vuy) < Nuy) < Zluy) + 1so if Z(uy) < k then v(i,) << k. On the other
hand, if Z(u,) = k then S (1y) < k whence v(u,) < M(u,) = k.

Thus, for each nonzero u, € U, , v(uy) << k. However, U, is not a T-space
by Lemma 4.13, and thus v is not an indicator function.

From the embedding Theorem 4.4 for T-spaces, follows an analogous
result for Haar spaces.
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(4.14) CorOLLARY. For an arbitrary T C R fet w - #(T) and suppose Zii
is finite. Then there exists a Haar space of degree Z(u) containing u.

Proof. lItiseasytolind ¢« .#(T)such that Z(¢) - Oand S (¢ - u) - Zlu).
If U is the T-space containing ¢ - u guaranteed by Theorem 4.4, then
{rje v e Ulis clearly the desired Haar space.
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