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In this paper it is determined preci,ely \vhen a gi\ ell function belongs II) ,111ne

Tchebycheff system.

I. I NTRODLCTIO]\

Let ..0( T) be the set of real-valued functions on any subset T of the' real
line. Let L'C ..0(T) be any (k I)-dimensional vector space over (the
real line). U is a Tchehvcheff space (T-space) of degree k ill for every nonzero
u E U the number of distinct zeros of u. Z(u). and the number of alternations
in sign of u(t) with increasing I. S(u), e:tch do not exceed k. Any basi'. 01' Cl
T-space is a T-system, as classically dehned in terms of the permClnenC<.~ ell'

sign and nonvanishing of the Haar determinant, and if:lI" II i, a T-sy,tem.
then the linear space generated by these functions forms Cl T-space. The
T-space U is a Marko/' space if there exists a chain of T-spaces L' of respecli\C'
degrees i, i O. I. .... k I such that U" C U i ... C U; 1 l.

A set of elements t, E T, i 0, I, ... , til, is said be a weak aftematiolllel/lI('JI((
of length m for u if t; 1 t; for i 1. .... Ill. and ( l)i lI([,) lIll) ():
i.j 0,1, ... , m. Define 5(11) to be the supremum over allm such thal there
is a weak alternation sequence of length III for /I. We show that 11 F( T)

can be embedded into a T-space or equivalently, a Marko\ ~race ItT
S'(u) CJ:J. In particular if S (u) k, we construct a chain of T-spaces L

of respective degrees i. i O. 1.... such that II U, and L" L 1 (

UI. C Uk, 1 C···.
Any function f such as S defined on .:7'( T) and taking value~ in the ~el of

nonnegative integers and J_ is called an illdicator fUllefioll if for -:very
(k I)-dimensional subspace U. U is a T-~pacc iff for all nonzero 1/ I.
f(u) k. VI/e show that S' is an indicator function which mal,'rl/e, ~lli the
indicator fUllctiom. Also, there l~ no minimal indicator fUl1cli"i1 On the
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other hand, while Z is not in general an indicator function (it is for the class
of continuous functions on an interval), Z(u) CS; leu) for all indicator
functions I subject to a nominal normalizing condition.

Let Uo ,... , Uk be any real-valued functions defined on an arbitrary seI T
of cardinality greater than k. For to '00" tIc E T let t = (to ,... , tk ) and define the
(k + 1) x (k + 1) matrix Vet) (the Haar matrix) by Vu(t) CC= ulti). Classi­
cally, a Tchebycheff system (or T-system) referred to a set {Ui}~~O of contin­
uous functions defined on some closed real interval [a, b] such that

det V(s) Vet) 0, (T)

whenever Su < S1 < ... < SIc , tu < t1 < .,. < t). . In this case of continuous
functions on an interval, the condition (T) is equivalent to the Haar condition:

det Vet) # 0, whenever tu '00" tic are distinct.

This in turn is equivalent to the condition that the u/s be linearly independent
and that every nontrivial linear combination of them have at most k zeros
(in [a, b]).

When each subset {Ui};~O' n = 0, 1, ... , k is a T-system, {Ui}:'~O has been
called a Markov system, and when a T-system {ud7~0 can be extended to
a larger T-system {Ui}~';;~ , the former T-system has been called extendable.
If for every choice of points So < .. , < S", to < ... < tIc , det V(s) Vet) ? 0,
{Ui};~O has been called a weak T-system.

Unfortunately, there has been no general agreement in the literature about
which term to apply to which concept and the reader is cautioned accordingly.
The terminology used in this paper has been chosen to reflect both historical
precedent as closely as possible and also the functional requirement that the
important classifications be named suggestively and succinctly.

Extensive studies of such T-systems and Markov systems can be found
[I; 3; 4; 6] and others. T-systems of continuous functions on open or half­
open intervals (see [3]) or on compact sets (see [1; 3, Chap. VII; 5]) have also
been dealt with. Work with T-systems of arbitrary real-valued functions
defined on an arbitrary partially ordered set appears to have surfaced first in
Rutman (7], and is further developed in Zielke [8; 9]. Combining results
from the last two papers gives

THEOREM (Zielke). Any T-space on a dense subset ofan open interval is an
extendable Markov space.

In his earlier paper [8], Zielke provides the example I, t sin t, teas t on
(0, 7T] of a T-space of infinitely differentiable functions on a closed interval
which is not a Markov space. In fact, for every dimension and for half-open
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as well as closed intervals, there are examples of non-Markov T-spaces in
Zielke [IOJ.

Fundamental to both of Zielke's papers is his investigation 01' alternation
properties which characterize T-spaces. While there is in the literature ,ome
prior mention of such properties (e.g. [2: 3. Ch<.Jp. V!I: 5, Sect. 3, paragraph 2))
they typical1y have been overlooked in the study of T-spaces. most probably
because for T~space'; 01' continuous functions Oil an i,1terval they arc trivial.
However, for T-spaces of arbitrary functions (hi aroitrary domains the\ arc
essential.

For, vvhile a set 01' continw)(h functions on an J,llenallS:l ! -:,:"L?ii: ii and
only if the functions sCitisfy the Haar condition. :,nd VI hile in fact a i 1)­
dimensional linear space of such functions on ell] open interv:li IS all
extendable Marko\ space if and only if each nonzero function has !lU more
than k zeros. for arbitrary ['unetiollS on an arbitrary domain these ,:onditluns
are far apart. Specifically. if 11':,0 satisf1es the Haar condition. \\e define it-;
linear span U to be a flaur space. This is equivalent w the condition that
2(u) k for each nonzero II U and the dimension of U is k iT in
addition the domain of the elements of U is linearly ordered and Sill) k
for each 11 U thell it follO\\s that ;u;': '. is a T-system as de11ned by
condition (1'), and conver~cly, ill which Cllse U IS a "I-space. I Equivalently.
if the dimension of [lis r I then C' i, a T-spaeC' ifand only irS 'lI) I,

for each nonzero II U)

Clearly, extendable Marko\ space ivlarku\ "pa,\? 7-SP:l'2\? !laar
space, and as we have said. \\hen the space consists of continuous functions
on an open interval. all these implications are reversihle. \Vhen the functioils
are arbitrary, even on an open interval, the last implication is not in general
reversible, but hy Zielke's theorem the first two nonetheless are. The
previously mentioned example shows that the second implicatioll j" not
reversible in general.

If a. h c ~, a h. then la, oj, ja, o[ and [a, b[ (or ja, bJ), are, respectively.
the closed, open, and half-opened intervals bet ween {f and b, For ~ll1Y set r.
card T denotes the cardinality of T. 1fT the closure of T (i n )
is denoted cI r. The letter I is reservcd to denote the I-faa I' matri x
(with respect to inferred u" ,.... lIf.·). The next lemma follows from linear
algebra.

(LI) LF~i'\lA. ror aliY .Ie! 7 l!Ie Sci ,iii;, 0 11 is lincarly imlc'jJendclll
if and only if Ihcf( arc dislinet Ii T (0 i k) slich that det l/(t) O.

It foll(HI·.\ that if Ill' .... , IIf. arc linearly indcp c'!1 c!ciil , lhen card T I,

(1.2) COROUJ,!,Y.

fin' some I.. , .... Ii

spanncdh\' ii,:;

Il; Ii,:; II is a lineariy indejicndelll SUbSCl of i( T then

I,}
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Let T be an arbitrary set and suppose {Ui};~O C :!F(T). Then {u,:};'~o is called
a Haar system of degree k if the Haar condition (see above) is satisfied.
If T is a linearly ordered set then {Ui};C~O is caJled a T-system of degree k if the
condition (T) is satisfied. When furthermore {Ui}:~O is a T-system of degree n
for n ~~o 0, 1, ... , k then {ui}i~o is called a Markov system of degree k.

The linear span of a Haar (respectively, T-, Markov) system of degree k
is called a Haar space (respectively, T-jpace, Markov space) of degree k.
Notice that a Haar, T- or Markov space of degree k has dimension k +- 1
and that any basis of a Haar (respectively, T-) space is a Haar (T-) system
of the same degree. Furthermore, the restriction of any such space of degree k
to a subset of cardinality at least k +- I remains such a space of degree k.
And in view of the defining Haar condition and condition (T), if {Ui};~O is a
Haar system on a set T (respectively, T- or Markov system on a linearly
ordered set T) and 0: T -+ T is a I-I map to a set T' (respectively, a strictly
increasing or strictly decreasing map to a linearly ordered set T), then
{Ui 0 O-I}i~o is a Haar system (respectively, T- or Markov system) on
OCT)·

The term "polynomial," sometimes appearing in the literature to denote
an element of an arbitrary space, is here reserved exclusively to denote an
algebraic polynomial (an element of the T-space with basis I, t, t 2 , ••• , t k ).

The following easily proved lemma is needed in what follows.

(2. I) LEMMA. Any element u of a Haar space U of degree k having k
(distinct) zeroes tl , , tk is a scalar multiple of a determinant function:
u(t) = ex det V(t, tl , , tk)for some ex o:F o. IfU is a T-space and tl < ... < t b

then after possibly multiplying u by --I, t E ]ti , ti+l[ => (-I)i 4>(t) < 0 for
i 00= 0, ... , k (with to - 00, tk+l ~c +- (0).

3. EQUIVALENT CHARACTERIZATIONS OF T-SPACES

Let U be a (k +- I)-dimensional subspace of :!F(T). In the preceding section
we defined U to be a T-space in terms of a basis for U. However one can
characterize a T-space by properties of the elements of U without explicit
mention of a basis. If U is a (k +- l)-dimensional subspace of continuous
functions on a closed interval [a, b], it can be shown (see [3, p. 22]) that if
every nontrivial element of U vanishes at no more than k points in [a, b]
then U is a T-space on [a, b]. However, for functions that are not continuous
the number of points at which the functions are zero is not sufficient to
characterize T-spaces. As a trivial example let T 0= IR and uo(t) = -1 if
t '-S: 0, uo(t) = 1 if t > 0.
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DEFINITION. Suppose T is a partially ordered set and u .:7( T). \ n
alternation sequence of length n for II on Tis ,t set lx" ,.. ., x,,: C~ T ;,atisfying
Xo Xfl and such that (--I)' IICy,) lI(x;) 0 (0 I,j n). (This, of
course, is equivalent to U(Xi) U(X i , 1) 0 when II 0.) The supremum of /I

taken over all alternation sequences of length n for 1I on T is denoted S (u).

Now suppose T1 , T'!. ,... are pairwise disjoint subsets of T such that /I

never vanishes on T i (i L 2, ...), and such that for each i, 0. h T. I T.
a t < b t t= Ti (e.g., if TC lq; then each Fi r n I for some interval/).
With II :1', denoting the restriction of II to T i , the supremum of:L S (II r)

taken over all such sets: T) , T'!. ,... : is denoted SI'(II).

The notation Sand S is consistent with that in [24]: while in these
sources the definitions of Sand S arc in terms of the number of sign
changes in related sequences, our definitions here are equivalent to the others.

For any set T, the number of distinct elements t T such that 1I(t) 0
(the zeros of II in T) is denoted 7(u).

A double zero t of II t= .'F(T) is a zero of II such that for some r ..\ r.
r t sandforanyx,yETsatisfyingr .\ r y S,II(x)u(.l') O.
The number of double zeros of 11 is denoted D(II). Of course, in the case of
ordinary polynomials. our "double zero" apr1ies to any zero of even order
(see Fig. I).

For our purposes, the domain of it function is unique and implicit 111 the
definition of the function. Thus, the restrictions of a function to two different
subsets of its domain are to be considered for notational purposes as two
different functions. The restriction of a function u to a set S is denoted 1I

(3.1) LEMMA. For any u fcc .F(T), u 0 and T lineaI'll' ordered, so(u)
S-(u) max{S-(u), Z(u): 'SO(u) Z(u) SO(lI) L(lI) D(lI) S (II).

Proof. Suppose T1 , T, ,... are pairwise disjoint subsets of T ,)n which if

never vanishes as above. ordered so that sup T, inf T i \ . The concate­
nation of an alternation sequence or length II in r \\ ith ,)11(: ,\1' \eng! h !I!

in T;. \ will, after possibly excluding the firq point in the ,econd ,(~que:1CC
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form an alternation sequence of length at least 11 + m on r, U ri~l . Hence,
SO(u) ~~ S-(u).

Conversely, an alternation sequence of length n on T can be partitioned
into subsets Pi , i = 1, ... , m of maximal cardinality subject to the constraints
that each Pi contains only elements which are consecutive in the original
alternation sequence, and that in the convex hull of Pi (for each i ,,= I, ... , m)
u does not vanish. Then by definition SO(u) ;;? Li S-(Ui) ;;? n- m + 1
where Ui =c U Ip . In as much as between any two P/s (ordered on T) there
necessarily lies a'zero ofu (by the maximality condition), S-(u) ,s:; SO(u) --L Z(u).
Hence the second and third inequalities also hold.

The fourth inequality is trivial.
For the last inequality, we can assume without loss of generality that

Z(u) < + w. Suppose r 1 , T2 , ••• are as above. Let an alternation sequence
of finite length be chosen in each T i and let Xo , Xl"" be the natural linear
ordering of the set formed by all the respective alternation sequences (one for
each Ti ) and all the zeros of u. By discarding (if necessary) from Xo , Xl , .

the first element from any of the alternation sequences chosen in T2 , 1'., , ,
respectively, the remaining points relabeled Yo < Y1 < Y:I < ... can be
formed into a generalized alternation sequence for u. Since there are n + 1
points in an alternation sequence of length n, it follows that SO(u) + Z(u) ,s:;
S(u). Furthermore, if Yi is a double zero, there exist r, s t= r such that for
all x, Y t= T, r,s:; X < Yi < Y ,s:; s implies u(x) u( y) > O. In this case,
either the generalized alternation sequence )'0' }\ , ... can be augmented by
the inclusion ofone or both of r or s, or else)'lII: min{ Yn ! n > i, u( Yn) =!= O}
was the first element in the alternation sequence chosen from some T i

(thus undiscarded). In either case an extra point exists in the generalized
alternation sequence on behalf of Yi . The nonzero elements of the possibly
augmented sequence can be decomposed into new T/s as above, and the
previous argument repeated for each double zero. Hence SO(u) + Z(u) +­
D(u) ,~ S+(u).

(3.2) Notes. 1. If T is a real interval and u is continuous, SO(u) = 0
whence S-(u) ,s:; Z(u).

2. If u is a polynomial, S+(u) ,s:; deg u.

3. If T is an open interval and u is a polynomial, S-(u) is exactly the
number of zeros of u in T of odd index, and Si(U) =c Z(u) -+- D(u).

4. All the inequalities in Lemma 3.1 can be simultaneously strict
(see Fig. I).

It was noted earlier that continuous functions defined on an interval r
form a T-space of degree k if and only if the only element with more than k
zeros is O. This equivalence is true in general for a Haar space:
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Lr.'.

(3.3) LE~lMA. Suppose U is a (k - I )-dimensionallinear subspaee of.F( n
(T arbitrary). Then U is a Haar spacc if and on/I' if Z(u) .. ", k for evelT
nonzero U E U.

While a Haar space is not in general a T-space, the following equivalences
do obtain.

(3.4) THEOREM. Let T be an arbitrary linearly ordered set and let U he a
(k i- I )-dimensionallinear .Iubspace of,JF( n. Then thcfollwoing are equiralent:

( I) U is a T-spacc of degree k:

(2) 51 (u) k and Z(u) k whencrer () II

(3) 510(11)' - Z(u) k lI'heni'l'cr () II E U:

(4) S (II) k whenCl'er 0 u E U.

Proof (l) (2). As in [8], Lemma 2(a) (b),

(2) (4). As in [8J Lemma 2(b) (c).

(4) (3). This is a direct consequence of Lemma 3. I.

(3) (I). Let:ur:;" be any basis for U. By Lemma 1.\ there are
elements of T, say til t,. such that with respect to :u/:;",
det V(to , ... , t,J 0, say det V(lo ..... t l.·) O.

Now suppose So .1',. are any other elements of T. It suffices to

show that det 1'(.\0' 1,) O. Define ri min:'\i , til (i 0, ... , k). Then
riO lnin{si' til Sj Si:] and similarly f j ';-;1 so rj 1";-;-1 (i O, ... ,k 1).

For 0, ... , k define (Pi(t) det V(rl' ,... , ri.l, t, t;1l ..... t,.) '" Li. If
<p;(t;) () then <Pi 0 whence by (3) CPr has exactly k zeros (namely.
ro ,... ,1'; [ • ti~1 , ... , t,,). It follows from (3) that in this case SO(rpi) O.
whence rpi(t;) 0 implies 'p;(t) 0 whenever t ]1', I' t i . l [ n T (i

0, ... , k; I' j inf T, tl[ sup T).

Now CPo(to) 0 and 1'0 E Jr l' t j [ so 'Po(ro) O. But 'po(ro) qt(rt! so
qll(tl) O. Continuing in this fashion, we eventually obtain det 1'(1'0 ..... 1').)

rpk(rl,) 0, that is, the sign of det V(tn ..... tJ.l is the same as the sign of
rpl,(rJ,).

Replacing t i by .\, in the definition of rp; , we analogously obtain that the
sign of det Vel\) ,... , .1',.) is the same as the sign of (p},(rk ), which has to be
proved. (Note: This proof is similar to [8J, Lemma 2(c) > (a) where the
author makes an unnecessary additional assumption.)

4. INDICATOR fUNCTIONS AND EMBEDDING

In Section 3 it was demonstrated how Tchebychelf spaces can be character­
jzed as finite-dimensional linear subspaces of ,JF( n, whose elements are
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constrained to have a specified maximum number of alternations or zeros.
Theorem 3.4 showed that a (k + I)-dimensional subspace of /7(T) is a
T-space if and only if for every u oF 0, S+(u) ~ k, max{S-(u), Z(u)} ~ k,
or SO(u) + Z(u) ~ k. These functions Sc, max{S-, Z}, so + Z as well as
SO + Z + D all therefore serve to indicate whether or not a finite-dimensional
linear subspace in .§F(T) is aT-space. fn fact, there are an infinite number of
such functions. We call this family of functions indicator functions for T.

DEFlNlTlON. A function I: g;(T) ->- 7L~ u {+ <Xl} where 71+ is the set of
nonnegative integers, is called an indicator function (for T) provided that for
any (k + I)-dimensional subspace U of .§F(T), U is a T-space of degree k iff
I(u) ~ k for every nonzero u E U.

Take any T-system {Ui}~~O (k > 0) on a linearly ordered set T, card T >
k + I, and any to E T. By changing the signs of uo(to),"" u1,,(to) or, respectively,
setting uo(lo) = ... = Uk(tO) = 0, the respective linear spaces generated by
the new u/s are not T-spaces. However, the respective linear spaces are of
dimension k + 1, and for every u oF 0 in the former, Z(u) ~ k while for
every u =F °in the latter, S-(u) ~ k, by application of Theorem 3.4. Thus,
neither Z nor S- are indicator functions. However, S-(u) and Z(u) are both
less than k for any nonzero element u belonging to any T-space of degree k.

We can introduce a partial ordering in the set of indicator functions for
a set T as follows. If II , 12 are any two, then II ~ 12 iff for every nonzero u,
II(U) ~ I2(u).

We prove in this section that S+ is the (unique) maximal element in the
family of indicator functions for any subset of IR.

We now proceed to prove this. Actually, we prove a stronger result,
namely that if S+(u) is finite then there is a Markov space of degree k con­
taining u. This is constructed explicitly.

Before we proceed to the general proof we show how the proof works
when u is a polynomial and T is some closed interval [a, b]. Let S+(u) = k,

and let all the zeros of u be simple in [a, b]. Then u has k distinct zeros in
fa, b], say Sl < ... < Sk' We show that irrespective of the degree of u (as a
polynomial), u can first be embedded into a T-space of degree k.

Let pet) = n~~l (s; - t). We assume for simplicity that Sl > a and
pea) . u(a) > O. Observe then that the polynomial u(t)fP(t) > 0 for all
t E [a, b]. Define the polynomials u;(t) = U(t)j(Si - t) (I ~ i ~ k). We show
that u(t) together with u,{t) (l ~; i ~ k) form a T-ssytem of degree k in
.~([a, bJ) (and hence the space which they span is a T-space of degree k,
containing of course u(t)).

Let Co , ••• , Ck be scalars, not all zero. It suffices to show that for vet) =

cou(t) + Li>O CiUi(t), Z(v) ~ k (recall that Z is an indicator function for
continuous functions on closed intervals), since then also u, U1 , ... , Uk must be
linearly independent. Define the polynomials Pi(t) = P(t)!(Si - t). Then
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1'(1)· U(t)(C,,·~ L C,i(Si I)) [u(I)PU)](COP(t) - L c P;(t)) is a polynomiai
ali of whose zeros in [a, b] are zeros of the polynomial ('oP I: (',P of

degree k. Hence 7(1') k.
In the general case, it must be shown that ,)' (,: I;, from ,,\hlCh the

desired result follows by Theorem 3.4. Difllculties arise because in genera!

u(t)/(s; t) is not well defined at I Si' This i, handled by "splitting'"

the set T at each ,Ii.

Given that S'(/I) x implies that /I can bc embedded 11110 a .'-'pac,-"

it is shown from Lemma 4.1 that II can be embedded nito ,I \'larko\ 'f1ClCI.'

(4.1) L!~iMA. ,)'uppose TC I'R. card 7 j, uud\] .\'" .... \. 1iI'lll'\

Xl x" inf T ThCII lIIn T-space or de~rn' t, Of)

{X], .\'~ , .... Xi: u Tis (/ MarkoI' space ol' degree' /. ill! T

PrO()j: Let (j be aT-space of degree k on :.\, . \" ... ,,\,: u T. let (

and for () i I, define U recursively by C, : /I C, 1 U( .\, 1) () .

Clearly. Uo C UI C ... C (j L' and the restriction U, T i, an (i 1)­

dimensional subspace of [, I' Furthermore. U; is a T~space of de~!;Te i

on T by the implication (3) (I) of Theorem 3.4-

Now suppose T C [[;1;, U (-:7"( T) and S (u) Y•. Let II be an\ strictiy

monotone bounded map, H: • U;;:, set T H( n, and ',et ;' U (/ 1 j~("h

Then S(II) S (f) and l' is bounded. Augment l by k S (i') poilHs a,
in Lemma 4.1 and extend,"' to I' on the augmented set so that S (1') S (i.).

It follows that if I' is contained in a T~space of degree S (I') on the augmented

set. then ,'is contained in a Markov space of degree S (,') 011 Pby Lemma 4. i.
Hence, II is contained in a I\larkov space of degree S (iI) on r II l( 'T'!.

(4.2) Luvl\M. S"u{i{iose r i\ linearly ordered. II JTJ'J. S (II) ;,. '111d
I T. Then Ihere exists (I weak alternatioll seifilence oj'length k jC)1' il. which
incillde" I.

Pro()/ Let I" t(. be any weak alternation sequence 1'01' If or
length k, and suppose (for example) that t" I In.! ' If u(t) 0 then

T" I" I t,," 1/, is a sequence of the desired type. If
u(t) O. lind 111 (0 m k) such that 1I(t,,,) 0 (possible since /(11)

S(u) k)' Then either ( \ )"" u(t) U(t,,,) 0 or ( I)" 1, III t) u(l",) O.
Trading I" for t in the first case. and t"'1 for I in the second. produces ~l

sequence of the desired type.

(4.3) LU1MA. Slippose P, I' Ie .F( n are such Thai P(t) 1'(1)

r(:) 0 then Pi:) O. Then S'(d S (P).

o and If

Proof. Suppose T"

[( I ),j 1'(1,) I'{tJ]((

1/, is a weak alternation sequence f(Jr lhen
1l' i P(tj) P{t;)] [d/,) P((,)1(I'((;) Pit)] 0 Since
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(-l)H V(t i) V(tj) ;;? 0 and is equal to 0 only if (-l)HP(ti)P(tj) = 0, it
follows that (_l)H pet;) P(tj) ;;? 0 whence to < ... < tk is a weak alter­
nation sequence for P. Thus S+(v) ~ STep).

(4.4) THEOREM. For an arbitrary TCIR let uEff(T) and suppose S+(u)
is finite. Then there exists a Markov space of degree S+(u) containing u.

Proof In view of Lemma 4.1 and the remark following, it suffices to
show that there is a T-space of degree S+(u) containing u. If S+(u) = 0 then
the one-dimensional space spanned by u is a T-space of degree O. It is a
similar triviality if u = 0. Hence, assume u *- °and S+(u) = k O. It
follows that card T ;;? k + I. For any x E IR define Ux = U !J-T,x]nT (the
restriction of uta ]- 00, x] n T). Note that when ]- 00, x] n T ,:""25,

and if the first inequality is strict, so must be the second.
Next it is shown that for 1 ~ i ,-;; k, there exists an x E T such that

S+(u,,) = i.

(4.4.1)

(4.4.2)

For i = k, since S~(u) = k there is a weak alternation sequence for u of
length k, say to < ... < t k ; then x = tk satisfies S+(ux) = k. Now suppose
that y has been found such that S+(Uy) = i > 1. We find an x < y such that
S+(ux ) = i-I and the desired result then follows by reverse induction on i.
Indeed, let t. < ... < ti ~ Y be a weak alternation sequence for Uy • Then
to < t1 < ... < ti~~1 is a weak alternation sequence for Ut. ,so i -- 1 ~

'-1
St(U t ) ~ S+(Uy) = i. If S+(Ut ) = i-I we are done, so assume

1-"] 2-1

S+(Ut ) == ; and let So < ... < Si be a weak alternation sequence for Ut. .
'1-1 1-1

Similarly, i-I ~ S+(us ) ~ i and we are done unless S+(us ) = i
1-1 t~l

in which case we once more find a weak alternation sequence ro < ... < r j

for U'';_1 . But ri ~ Si-l < Si ~ ti- 1 < ti ~ Y and U(ti- 1) u(ti) ~ 0, so either
ro < ... < ri < ti- 1 or ro < ... < ri < ti is a weak alternation sequence
for U y of length i + I > S+(Uy), a contradiction. Hence, either S+(Ut ) =

'-1

i -- 1 or else S+(us ) = i-I, which completes the proof that for 1 ~ i ~ k,i-1
there exists x E T such that (4.4.2) holds.

Define

for 1 ~ i ~ k. By (4.4.2), i-I ~ S+(us ) ~ i (l ~ i ~ k). It follows that
S+(u s) ~ i < i + 1 ~ S+(us;J, so .

Next we show that if x, YET, x < y and u(x) 'F 0 then

S+(ux) + S+(u l[x,y]nr) = S+(Uy).

(4.4.3)

(4.4.4)
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Let l' U '[",.IJ]nT . By Lemma 4.2 find a weak alternation sequence of length
S+(u,) for u, including x and one of length 8'(1') for p, also including x,
Since u(x) ==". (l, the concatenation of the two sequences forms a weak
alternation seq uence for 11" • whence S; (u,) S (l') S (11,,1. On the other
hand, there is a weak alternation sequence of length ,S' (u,,) for U'I • containing
x, also by Lemma 4.2. This induces weak alternation sequences 1',)1' u, and 1'.

so 8' (11,,) 'S (1') S (u,,). completing the proof of (4.4,4),
It follows from the preceding that for any\'. r 7.

.\ , then
by the deliniticli1

Indeed, if lI(X) u( r) 0 then (4.4.5) is trivial, so assume lI(X) l/( r) 0,

Assume x < y. let n S (U'I) and find by Lemma 4,2 a weak alternation
sequence of length n for 11,;, including x, say 10 1",.\

Then 1/1 Si(/I,.). 11 11/ S(lI: 'linT) and thus hy 14A.4) Ii

[S (II,) 1111 [S (U [c",t!r'r) (II 111)] S (II,!) I! O. so in p,trU-
cular m S'(II,.), Furthermore. ( I)"'" li(") lI(t,,) 0 ~o if ( 1) ,n 1

lI(X) lIt .1') 0 then to I), r is a weak alternation sequence for

II" of length 11 l, an impossibility. Hence I)"" /l1\') ill O. COIll-

pleting the proof of (4.4.5).

Define So :0. ,II. I x. Notice thal il
S(u".) i by the definition 01'1;. whereas S (u,)

Of,l i ,!. Hence.

I, ,
", 1 S (u,.)

Furthermore. we obtain for k

. Ii Il n r 11(1) !4.4 /)

S (II,I

k. there is a

o then S (II S (II,) whcnc\Ci"
by (4.4.6). whence I S' (li I

card r

since if 1I(r)

]1, , tl n T
diction.

Now since T diifer':nt t"rol1\ ,Ii" ,I, ',,1\

1'" 1 I' J(O fJ !,).Hy(4.4.7)1l(t.) O,and we may. without
iCbS of generality assume thal ( 1)"11(1,) () With this normalizatIon.
since S (1I 1J f! by (4.4.h), for any! T ( i ).\" iI(I) () 144.51.
Hence, by (4.4.6) and (4.4.7), We' obtain

II' ll(t ) () (0 /-..1

The two results (4.4.3) and !-1.4.8) were the !loal \,1' thi" lir'! p,:;'! ,,[' the
proof of Theorem 4.4.

~~c)(L ~; SOlnc\vhat in\'{'l\'('d pr(.H.TS'> h und('r1~l \\:li'~ ,\: PUrjl(';·'I'c

"split" T :\t each "alternation" point " and t,) In',Cn int,) Ib" ",pL,"
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"alternation" point ri . This new point is isolated with respect to T, ensuring
that rp;(t) = 1/(1'; - t) be well- defined (and bounded) in T. However, it is
needed that the r/s be alternation points of the new split set 8T. To ensure
this, when S; E T, s; must fall on the appropriate side of r; , according to the
sign of u(s,): that is, on the left (]S;-l , SiD side when (-l)i--l u(s,) > 0 and
on the right (]s;, siHD side when (-I)i U(Si) > O. Define 8: lR --+ lR by
8(t) = t + 4 max{i lSi < t} when t cF .11"'" Sk; for I ~; i ~ k, define
8(Si) = .Ii -I- 4i -- 2 except when .Ii = SiH' in which case define 8(.1;) =,

.Ii -I- 4i -I- 2 (c= 8(.1'+1»' Clearly 8 is strictly monotone on lR, as is 8~1 on the
image of 8.

For I ~ i ~ k, define

.Ii l' T or .Ii E T, U(S;) = 0 and .Ii < .Ii ,-1 •

r i = 8(Si) -- I

= 8(Si) -- I

= 8(Si)

if .Ii E T and (-I)H U(Si)

if .Ii E T and (-I)i u(s,)

if

O',

0, or .Ii =-, Si+1 ;

Tn order to show that 1', is well defined, it is sufficient to show that if .Ii == .1'+1

then .Ii E T and (--I)' U(Si) ~ O. Indeed, for x < .Ii' S'(u,,) < i while for
x > .Ii =-'= S'+l , S+(Ux) > i (by the definition of .I, and SiH)' Thus x =c= .Ii is
the only element which can satisfy (4.4.2), whence .Ii E T and S(us) =c i.
Furthermore, by the definition of .Ii , since .Ii c= SiH , .Ii must be an ac~umu­
lation point of T from the right. Thus there is atE ]SiTl , Si+2[ n T, and by
(4.4.6) S+(u t ) = i + I. But ( __ I)i+1 u(t) > 0 by (4.4.8) and [(-I)i u(s,)]
x (( - 1)1+1 u(t)] = (-I )Hi+ll u(s,) u(t) ~ 0 by (4.4.5), so (-I)' U(Si) ~ O.

By construction, 1'1 < ... < f ,,_ , no 1', is an accumulation point of 8T and
1', E 8T only if u(s;) = 0 and .I, < Si+l' in which case ri= B(s,). Since
(---1)' u(t) 0 for t E lSi , SiH[ n T, it follows from the above construction
that whenever t E (ri , rid n 8T, (-I)i u(8-l (t» ~ 0 (0 i ~ k); equality
occurs, of course, only when t =, 1', '

A T-system defined on the set 8T and including the function u 0 8-1 is
constructed. This T-system then pulls back to a T-system on T which
includes u. Let rpo(t) = I and let rp;(t) c= I/(ri ~ t) for I i ~ k. For all
t E 8Tand 0 ~ i ~ k define u, E .'F(8T) by Ui(t) = lI(8-1(t» rp,.(t) unless i > 0
and t = 1', in which case let ui(ri) = (_I)i-l,

Notice that Uo = u 0 8-1. It will be demonstrated that {U,}7~o is aT-system
on 8T. Assuming this is done, define U, == u, 0 8 (0 ~ i ~ k). Then Uo = u
and {ai}~~O is a T-system of degree k on T, which is equivalent to what was
to be shown.

Hence, it suffices by Theorem 3.4 to show that the linear space generated
by {u'}~~o is of dimension k -+- 1 and that for any nonzero v therein, S(v) ,;; k.
For this it is sufficient to show that for any scalars Co .... , C/. , not all zero, if
v = 2: CiUi then S+(v) ~ k (since card T > k and Z(v) < S+(v».

k •
Define pet) = ni~l (ri - t). Then for all t E 8T, If u(8-l (t» cF 0, then
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t cc r, (I k) so P(t) 0 and 1I(8 1(t»;P([J 0 (since for I

)r,,I'i'l[rd,lT, both ( 1)'11(11- 1(£) 0 and (- I) P(t) 0). Let Q,(t)
P(t) '{i(£) (0 k) and set QU) L c,Q,(t). Then each Qi and hence Q
are all polynomials of degree less than or equal to k. Thus. by (3.2.2)
S1(Q) degQ k.

If 1I(lIl([)) 0 then e(t) I:c;u,(i) [1I(t! 1(i»iP(T)]L:C,P(t)C!i(l)

[u( 8- 1([»1 P(t)) Q(t). Since the term in brackets i ... sl rictly positive. c( t) QU )
[u(8- 1(t»/P(t») Q(tj2 0, and e(t) 0 implies Q(t) O. On the other hand
ifu(8- 1(£))c,Othent r 8(sj)forsomej I. ... ksuchthat\, S

In this case u,(r,) li(S;) '{ ,(1',) 0 when i i and l'(r,) I: cill/(ri)

(',( ) )i-I. At the same time Qi(rJ 0 if i j. ... o Q(r,) ~ c,Qi(r,)

C/Qj(l'i)' Observe that Qj(t) ni' ,(r, n. so ( 1)' I Q,(r,j O. Hence
e(r,) Q(r). c/( !)i 1 Q;(rj) 0 and if e(r,) 0 then C, 0 so Q(rj) O.
Thus by Lemma 4.3, S (1') 5 (Q) k.

(4.5) COROLLARY. For (/n arbitrary Te iR let li .J-~(i) and SUpPOS(

S(u) = k cn. If card T n then there eXI\( T-spaces U; 7'(1) of
respcctiee degrees i, i O. 1.. ... n I slIch thm 11 (;'1 and (;'0 C (;'1 C ...
Uk C ... C Unl • If card T is infinite then there exist T-spaces U,F( 1'\
of respective degrees i, for all i. such that u U;. and Un C U1 C ,. ',_ U, I

U1,-il C···.

Proof. Shrink T to be a bounded set l' as in the discussion following

Lemma 4.1. (n the first case, fmd a finite set of points I' i' 1'" 2 ..... I'll I

satisfying sup 'T' r",1 r l .2 - 1'" I and in the second case find a
countably infinite set of points r, I • ri,. c .... satisfying sup 7' I"i"
< rk; 2 •... Let U/I C UJ U/ be the T-space~, U. of respective degree i
guaranteed by Theorem 4.4 with II \ U . For i k deli ne II,U) 11(1 )/(1' I)

on 'T' and Jet U, be the (i I ),dimension:li subspace of ,,,-( T) generated by C
and Ui,1 , ... , iii . Then C/, C U1,c 1 C Uk ::. C ... and it can be shown, as in the
proof of Theorem 4.4, that each Ui is a 7-space of degree i. for i k

(4.6) COROLLARY. Any indicator fUIlCl iOIl J for a subset T C IR satis/it ,
I(u) 5 c (II) for allnol1zcro u c,.y;(T).

Proof By Theorem 4.4, given 0 11 :P(T) there is a T-space of degree
5:(u) containing u. Thus by definition, l(u) 5" (u).

Notes. (I) If 11 is bounded then by construction the elI:ments of U
are also bounded. It is unKnown whether if 11 is continuous (respectively,
n-difTerentiable) then there: exists a 7'-space of degree S+(u) of continuous
(respectively, l1-differentiabIe) functions, containing u.

(2) it follows that when T,_ 0 it .i'(!) l~; a member of some
Markov (respectively, T-) space if and only if :'j ,If} I.
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Thus, another characterization of S+(u) derives, namely, Si(U) is the
smallest degree of all T-spaces containing u.

(3) The obvious question, namely if U is an n-dimensional subspace of
:F(T) such that S+(u) < + 00 for each nonzero u E U, does there exist a
T-space containing U, provides an open problem which would be very
worthwhile settling having, as it would, many applications in approximation
theory. It appears difficult, however, even for the case n = 2.

The next theorem and corollary are used to show that no indicator
function strictly dominates another in the sense that Il(u) < 12(u) for all u
such that 12(u) < + 00.

(4.7) THEOREM. Let U be a (k + I)-dimensional subspace of ff(T), T
linearly ordered. Given any indicator function I for T, there is a nonzero u E U
such that leu) ;:;, k.

Proof Suppose for every 0 7'= U E U, leu) < k. Then every k-dimensional
subspace of U is a T-space of degree k - 1 by definition of the indicator
function. However, since U is (k + I)-dimensional there exists by (1.1) some
nonzero U E U, such that v has at least k zeros. Consider some k dimensional
subspace of U containing v. However, no linear space containing u is aT-space
of degree k - 1 by Theorem 3.4 since u has k zeros. Therefore, there exists
some nonzero element U in the subspace containing u such that leu) ;:;, k.

(4.8) COROLLARY. If U is a T-space of degree k then there is a nonzero
u E U such that I(u) = k.

(4.9) COROLLARY. Let Il , 12 be any two indicator functions for the same
set. Given any T-space U of degree k on this set there exist ul , u2 E U such
that

Il(Ul ) :s::; Ioz.{u l ),

I l (U2) ;? 12(uz)·

Proof. By Corollary 4.8 there exists Ul E U such that Il(ul ) = k whence
12(Ul ) :s::; Il(Ul ) = k; similarly, the required Uz exists.

The Theorem 4.10 shows that no indicator function is subordinate to
every indicator function.

(4.10) THEOREM. Given an indicator function I for a set T of cardinality
at least 2, there exists an indicator function J for T and a nonzero U E .'7'(T)
such that J(u) < leu).

/'

Proof. Given T, let U C .'7'(T) be a T-space of degree at least 1. By
Theorem 4.7, u E U can be found such that leu) ;:;, 1. Let J be defined on all
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real-valued functions by J(I') ,)'(/') if l' 11 . .1(11) O. It is easy to verif!
that J is an indicator function since any linear space containing 11 also
contains'Yli for all real ,x, and for, 0, l, J(.YiI) 5 (VlI) 5(11).

While there is no minimal indicator function, suppose I i', an indicator
function which satisl1es l( VlI) feu) for all real numbers \ O. and which
also satisfi.es f(v) leu) whenever l' is the restriction of Ii to a smaller domain:
then Z(lI) leu) for all 11. This is the content of the Theorem 4. II.

(4.1\) THEOREM. Let I be anl' indicator jilllction jl)r u sct r. Then jii!"
o lIF(T) there is a nOI1:ero\ c IR and a subset 5 C T slich that 7(11)

/(",u s),

Proof. Let 5 C T be the set of zenl, of u together wilh some pOint I"

such that u(tu) O. We shov, that for some real \.1(\11\) J:(u). Suppose
maX,i'O [(exu s) 111 7(ul. Let U C j-(S) be a T-space of degree IIi.

Let V be the m-dimensional subspace of L such thal for every i' . fIT,,) O.
Consider the linear space IV spanned by the elements of V and iI \. Sine?
11(10) 0 dim W 111 I. Any clement UJ II is of the form

0.) U'iI

where l' (~ I' and ({ is a sc,t!ar. Clearly l(au ,) III for a O. \'-;ie show that
if I' 0 then 5 (w) III and hence 1(0.) III by Corollary 4.6. Indeed,

r(t) w(t) when t t". and 1'(10) O. so any generalized ;l1ternation
sequence for w is also onc ror I'. Hencc S' (w) iii if I' O. Hence [(01) Iii

for (J) 0 belong to ~V. which implies that IV IS :l T-,pace of degree m.
However, II has more than iii zeros and i,; contained in ~·V. so W canno1 be ,I

T-space by Theorem 3.4, a contradiction. Theret'ore, [(w sl k fllr SOiTli.' I.

In Theorem 4.10 it was shown that there can be no mini mal indicator
function. In Theorem 4. i! it was shown th'lI /. \\hilc not ;\n indicator
function, does bound from below those indiGiltlr l'LlI1ctiuns which satisfy a
nominal normalizing c\)l1dition. It is now SllO\\n that even aiilong,uch
"well-behaved" indicator functions, there can be no minima! e!emf:nt.

Indeed, we exhibit two "well-behaved"' indicator functions\' :mel .\! \','1'

which mint N( '), AI( 'Y: is not an indicator function. I ~ follows that there C,lll

be no indicator function subordinate to both Nand M.
For any linearly ordered set T and any II U C F(r), let

MUI) l11ax:S (II), 7(u);,

N(lI) /(11) if S"(1I} O.
Z(II) It S·u( II) O.

Then AI is an indicator fU:lction b! rH?OrCm 3.4. \'vc next ';\1ow tl1a1 \ 1\ ~m

indicator function.
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(4.12) LEMMA. N is an indicator function.

141

Proof. For any T-space U of degree k and any 0 oF u E U, N(u) ~
S+(u) ~ k by Theorem 3.4. On the other hand, if U is a (k + I)-dimensional
subspace of .'~(T) such that N(u) ~ k for all nonzero u E U, then Z(u) ~
N(u) ~ k whenever 0 oF u E U, so by Lemma 3.3, with respect to any basis
for U, det V(to ,... , tiC> oF 0 whenever to < .,. < t k are elements of T. In
order to show U is a T-space, by Theorem 3.4 it remains to show that the
above determinant has permanence of sign. The proof of this is exactly the
proof that (3) =c> (1) in Theorem 3.4.

ft remains to show that

v(u) = min{M(u), N(u)}

is not an indicator function. To this end, we first exhibit a general method
for constructing Haar spaces which are not T-spaces.

Indeed, Jet U C g;-(T) be any T-space of degree k, where card T > 2,
and let t* E T satisfy inf T < t* < sup T. For each u E U define u* E .~(T)

by

u*(t) = u(t)

=-u(t)

if

if

Set U*={u*E.~(T)iuEU}. With these definitions, we obtain the
following.

(4.13) LE'\IMA. Given any T-space UC.~(T) where card T > 2, thenfor

any choice of t* ' U* is a Haar space but is not aT-space.

Proof Suppose the dimension of U is k + l. Then the dimension of U*
is also k -+ l. Furthermore, for each nonzero U* E U* , Z(u*) = Z(u) ~ k
by Theorem 3.4. Thus U is a Haar space.

Let 'P E U have k distinct zeros, one of which is t* (cf. (2.2». By Lemma 3.1
D( <p) = 0, so in particular t* is not a double zero of <po Thus, t* is a double
zero of 'P* and D('P*) =. l. Hence, again by Lemma 3.1, S I( 'P*) k so U*
is not a T-space by Theorem 3.4.

Now, let T satisfy 2 < card T, and let U C .~(T) be any T-space such that
the degree k of U satisfies 1+ 2k ;? card T. Then, for any nonzero u * E U* ,
v(u*) N(u,,) ~ Z(u*) + I so if Z(u*) < k then v(u*) k. On the other
hand, if Z(u,,)c= k then S-(u*) k whence v(u*) ~ M(u*) = k.

Thus, for each nonzero u* E U" , v(u*) k. However, U" is not aT-space
by Lemma 4.13, and thus v is not an indicator function.

From the embedding Theorem 4.4 for T-spaces, follows an analogous
result for Haar spaces.
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(4.14) COROLLARY. For (If! arbitrary T let li .y.-c( T) and suppose 7( ui

isjinite. Then there exisls a !1aar space o{dcgrce Z(II) cOlllainifig /I.

Proof It is easy to lind ¢ lee J'( T) such that Z( ¢)
If U is the T-space containing ¢. 11 guaranteed
lrl¢ l' (' Ui is clearly the desired Haar space.
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